Generating a Fuzzy Decision Tree by Inductive Learning
نویسندگان
چکیده
منابع مشابه
Integrating Decision Tree Learning into Inductive Databases
In inductive databases, there is no conceptual difference between data and the models describing the data: both can be stored and queried using some query language. The approach that adheres most strictly to this philosophy is probably the one proposed by Calders et al. (2006): in this approach, models are stored in relational tables and queried using standard SQL. The approach has been describ...
متن کاملUncertain Decision Tree Inductive Inference
Induction is the process of reasoning in which General rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed, such as CLS, ID3, Assistant and C4.5. These algorithms suffer ...
متن کاملGenerating fuzzy rules by learning from examples
A general method is developed to generate fuzzy rules from numerical data. This new method consists of five steps: Step 1 divides the input and output spaces of the given numerical data into fuzzy regions; Step 2 generates fuzzy rules from the given data; Step 3 assigns a degree of each of the generated rules for the purpose of resolving conflicts among the generated rules; Step 4 creates a com...
متن کاملFuzzy Decision Tree
Decision trees have been widely used in machine learning. However, due to some reasons, data collecting in real world contains a fuzzy and uncertain form. The decision tree should be able to handle such fuzzy data. This paper presents a method to construct fuzzy decision tree. It proposes a fuzzy decision tree induction method in iris flower data set, obtaining the entropy from the distance bet...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1993
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.113.7_488