Generating a Fuzzy Decision Tree by Inductive Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Decision Tree Learning into Inductive Databases

In inductive databases, there is no conceptual difference between data and the models describing the data: both can be stored and queried using some query language. The approach that adheres most strictly to this philosophy is probably the one proposed by Calders et al. (2006): in this approach, models are stored in relational tables and queried using standard SQL. The approach has been describ...

متن کامل

Uncertain Decision Tree Inductive Inference

Induction is the process of reasoning in which General rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed, such as CLS, ID3, Assistant and C4.5. These algorithms suffer ...

متن کامل

Generating fuzzy rules by learning from examples

A general method is developed to generate fuzzy rules from numerical data. This new method consists of five steps: Step 1 divides the input and output spaces of the given numerical data into fuzzy regions; Step 2 generates fuzzy rules from the given data; Step 3 assigns a degree of each of the generated rules for the purpose of resolving conflicts among the generated rules; Step 4 creates a com...

متن کامل

Fuzzy Decision Tree

Decision trees have been widely used in machine learning. However, due to some reasons, data collecting in real world contains a fuzzy and uncertain form. The decision tree should be able to handle such fuzzy data. This paper presents a method to construct fuzzy decision tree. It proposes a fuzzy decision tree induction method in iris flower data set, obtaining the entropy from the distance bet...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems

سال: 1993

ISSN: 0385-4221,1348-8155

DOI: 10.1541/ieejeiss1987.113.7_488